Substitution on Five µ-Oxo/µ-Sulphido Incomplete Cuboidal Mo^{IV}₃ lons $[Mo_3O_xS_{4-x}(H_2O)_9]^{4+}$: Kinetic Effects Resulting from the Replacement of Core Oxo by Sulphido Ligands

Bee-Lean Ooi, Manuel Martinez, and A. Geoffrey Sykes*

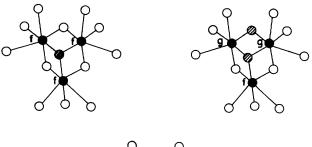
Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, U.K.

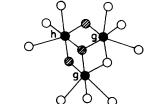
A 570-fold spread in rate constants (25 °C), [H+] = 2.0 m, is observed for 1:1 NCS⁻ substitution (of H₂O) at Mo on the title complexes, with replacement of core $\mu_3(O)$ by $\mu_3(S)$ decreasing (factor of 10), and further replacement of the three $\mu_2(O)$ by $\mu_2(S)$ increasing (factor of 570) the rate of substitution.

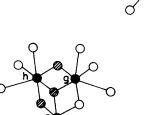
The preparation¹ and determination of structures by X-ray crystallography²⁻⁸ of five incomplete cuboidal trimeric Mo^{IV} aqua-ions in the series $[Mo_3O_xS_{4-x}(H_2O)_9]^{4+}$ (x = 0-4) as in Table 1, have been described. There are three terminal H₂O ligands attached to each Mo. Here we focus on trends in reactivity, and the effect which replacement of core O²⁻ by S^{2-} has on the substitution of H_2O ligands.

Different Mo identities (designated e-h) arise, depending on whether the Mo is bound to three μ -oxo-ligands as in $[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+}$ (molybdenum atoms designated e), or to different combinations of core atoms $\mu_3(S)\mu_2(O)_2(f)$, $\mu_3(S)\mu_2(O)\mu_2(S)$ (g), or $\mu_3(S)\mu_2(S)_2$ (h) as illustrated. In the case of $[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+}$, it has been established that the H₂O ligands attached to each Mo behave differently depending on whether they are *trans* to the core μ_2 -oxo or µ₃-oxo ligands.⁹ Different substitution properties are observed, with the H₂O *trans* to μ_2 -oxo ligands the more labile. For $[Mo_3\mu_3-(O)\mu_2(O)_3(H_2O)_9]^{4+}$ a statistical factor of three is relevant (because of the trimeric nature of the reactant),^{10,11} and rate constants determined with the in-coming ligand (NCS⁻ or C₂O₄H⁻) in excess (\geq 10-fold) are a factor of three smaller than those with the trimer in large excess.

Forward and back rate constants (k_1 and k_{-1} , 25 °C) for NCS- studies (equation 1) are used to illustrate trends in reactivity (Table 1). Rate constants were obtained by conventional spectrophotometry (first three entries) and High-Tech SFA-11 rapid-mix or Dionex stopped-flow spectrophotometry. In all cases, rate constants with NCS- in excess have been modified to allow for statistical factors, and are for reaction at one Mo centre.


$$Mo^{IV_3^{4+}} + NCS^{-} \xrightarrow{k_1}{k_{-1}} Mo^{IV_3}NCS^{3+}$$
 (1)


There is a 570-fold difference in k_1 values from the most inert, $[Mo_3\mu_3(S)\mu_2(O)_3(H_2O)_9]^{4+}$, to the most labile, $[Mo_3\mu_3(S)\mu_2(S)_3(H_2O)_9]^{4+}$, of these ions. Closer examination of the data reveals a 10-fold decrease in k_1 on replacing $\mu_3(O)$ in $[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+}$ by $\mu_3(S)$ to give $[Mo_3\mu_3(S)-$


 $\mu_2(O)_3(H_2O)_9]^{4+}$. However, on replacing the $\mu_2(O)$'s by $\mu_2(S)$ quite the opposite effect is observed, giving a substantial increase in lability of the H₂O's.

In the case of $[Mo_3\mu_3(S)\mu_2(O)\mu_2(S)_2, (H_2O)_9]^{4+}$ biphasic kinetics are observed, ¹² and rate constants for two concurrent processes are obtained. One of these (the slower), requiring a statistical factor of two to obtain a correspondence of rate constants with first NCS- and then Mo^{IV} in ten-fold excess, is identified as substitution at the Mo's of type g, and the other is therefore for substitution at the Mo of type h. Similarly $[Mo_3\mu_3(S)\mu_2(O)_2\mu_2(S)(H_2O)_9]^{4+}$ provides another example of non-equivalent Mo^{IV} sites. Only one rate constant has so far been determined, and since a statistical factor of two is required, this process is assigned to substitution at the Mo^{IV}'s of type g. The H_2O 's co-ordinated to the third Mo^{IV} , which is bonded to two $\mu_2(O)$'s are expected to substitute more slowly.

An additional feature is the unexpectedly high acid dissociation for H₂O ligands of $[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+}$, $K_a =$ 0.42 M from the kinetics in toluene-p-sulphonic acid (HPTS), $I = 2.0 \,\mathrm{M}$ (LiPTS), where it has been demonstrated that

Table 1. Summary of rate constants (25 °C) for equilibration with NCS⁻ in 2.0 M-HClO₄, I = 2.0 M.

Complex	Type of Mo	k ₁ (м ⁻¹ s ⁻¹)	$k_{-1} \ (s^{-1})$	$K_1 \ (M^{-1})$
$[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+a}$	е	2.13	2.2×10^{-3}	968
$[Mo_3\mu_3(S)\mu_2(O)_3(H_2O)_9]^{4+}$	f	0.37	$1.6 imes 10^{-4}$	2310
$[Mo_3\mu_3(S)\mu_2(O)_2\mu_2(S)(H_2O)_9]^{4+}$	f	not determined ^b		
	g	7.7	2.7×10^{-3}	2850
$[Mo_{3}\mu_{3}(S)\mu_{2}(O)\mu_{2}(S)_{2}(H_{2}O)_{9}]^{4+}$	g	23	1.4×10^{-3}	1640
	h	82	$2.4 imes 10^{-2}$	3420
$[Mo_{3}\mu_{3}(S)\mu_{2}(S)_{3}(H_{2}O)_{9}]^{4+}$	h	212	9.2×10^{-2}	2300

^a Data from ref. 10. ^b Absorbance changes are small.

substitution proceeds solely by the conjugate-base form.¹¹ The behaviour of $[MO_3\mu_3(S)\mu_2(O)_3(H_2O)_9]^{4+}$ is similar. The high acid dissociation may stem from proton bridging, as has been detected for other transition-metal complexes.^{13,14} From the X-ray crystal structures on complexes with the $Mo_3O_4^{4+}$ core, it is clear that for the aqua-ion adjacent Mo's have approximately parallel Mo-OH₂ bonds, Mo-Mo separation 2.52 Å,³ which is appropriate for such bonding. However with $[Mo_3\mu_3(S)\mu_2(S)_3(H_2O)_9]^{4+}$, which has an Mo–Mo separation of 2.77 Å,⁸ the conjugate-base pathway has also been identified and K_a is of similar magnitude, a finding which is currently being further explored.

These various effects, in particular the opposing trends which we report on replacing $\mu_3(O)$ by $\mu_3(S)$ (less labile $H_2O's$) and $\mu_2(O)$ by $\mu_2(S)$ (more labile $H_2O's$), clearly have implications with regard to the bonding of O²⁻ as compared to S^{2-} in these clusters. Such trends attributable to σ - and π -bonding effects have been discussed extensively in the context of Pt^{II} square-planar substitution reactions¹⁵, but are more difficult to appraise for octahedral and, in this instance, cluster-type complexes. A further effect is that which geometric distortions stemming from the replacement of O2- by the bigger S²⁻ might have (note the different rate constants for g and h Mo's in Table 1). From our most recent preparative work,¹ an apical µ₃-oxo ligand does not appear to be compatible with μ_2 -sulphido ligands, and the existence of such complexes has not been confirmed in our recent studies.

On replacing oxo by sulphido ligands equilibrium constants K_1 (Table 1) exhibit no systematic trend and the four-fold variation is mild compared with the kinetic effect on k_1 . We note that for studies in 2 M-HClO₄ k_1 is a composite term incorporating K_a . Values of K_a are of similar magnitude for $[Mo_3\mu_3(O)\mu_2(O)_3(H_2O)_9]^{4+}$ and $[Mo_3\mu_3(S)\mu_2(S)_3(H_2O)_9]^{4+}$, and we have no reason to suppose that the pattern of rate constants in Table 1 will change much on taking this factor into account.

B-L. O. thanks the University of Newcastle upon Tyne for a Ridley Fellowship, and M. M. the University of Barcelona for leave, and the British Council for support.

Received, 15th February 1988; Com. 8/00536B

References

- 1 M. Martinez, B.-L. Ooi, and A. G. Sykes, J. Am. Chem. Soc., 1987, 109, 4615.
- 2 A. Bino, F. A. Cotton, and Z. Dori, J. Am. Chem. Soc., 1978, 100, 5252; 1979, 101, 3842; Inorg. Chim. Acta, 1979, 33, L133.
- 3 E. O. Schlemper, M. S. Hussain, and R. K. Murmann, Cryst. Struct. Commun., 1982, 11, 89.
- 4 S. F. Gheller, T. W. Hambley, R. T. C. Brownlee, M. J. O'Connor, M. R. Snow, and A. R. Wedd, J. Am. Chem. Soc., 1983, 105, 1627.
- 5 T. Shibahara, H. Hattori, and H. Kuroya, J. Am. Chem. Soc., 1984, 106, 2710.
- 6 T. Shibahara, T. Yamada, H. Kuroya, E. F. Hills, P. Kathirgamanathan, and A. G. Sykes, Inorg. Chim. Acta, 1986, 113, L19.
- 7 T. Shibahara, H. Miyake, K. Kobayashi, and H. Kuroya, Chem. Lett., 1986, 139.
- 8 F. A. Cotton, Z. Dori, R. Llusar and W. Schwotzer, J. Am. Chem. Soc., 1985, 107, 6734; Inorg. Chem., 1986, 25, 3654; T. Shibahara and H. Kuroya, Polyhedron, 1986, 5, 357; A. Müller, R. Jostes, W. Eltzner, C.-S. Nie, E. Diemann, H. Bogge, M. Zimmerman, M. Dartman, U. Reinsch-Vogell, Che Shun, S. J. Cyvin, and B. N. Cyvin, Inorg. Chem., 1985, 24, 2872
- 9 K. R. Rodgers, R. K. Murmann, E. O. Schlemper, and M. E. Shelton, Inorg. Chem., 1985, 24, 1313; G. D. Hinch, D. E. Wycott, and R. K. Murmann, Polyhedron, 1986, 5, 487; D. T. Richens, L. Helm, P.-A. Pittet, and A. E. Merbach, Inorg. Chim. Acta, 1987, 132, 85, and personal communication.
- 10 P. Kathirgamanthan, A. B. Soares, D. T. Richens, and A. G. Sykes, Inorg. Chem., 1985, 24, 2950.
- 11 B.-L. Ooi and A. G. Sykes, *Inorg. Chem.*, 1988, **27**, 310. 12 A. A. Frost and R. G. Pearson in 'Kinetics and Mechanism,' 2nd Edn., Wiley, New York, 1961, p. 160.
- 13 M. Ardon and A. Bino, Inorg. Chem., 1988, 27, 1343.
- 14 F. Galsbol, S. Larson, B. Rasmussen, and J. Springborg, Inorg. Chem., 1986, 25, 290.
- 15 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 5th Edn., Wiley Interscience, New York, 1988, p. 1300.